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Abstract— This work compares several cooperative naviga-
tion solutions for formations of autonomous vehicles, equipped
with depth sensors and capable of taking bearing measurements
to their neighbors under a certain measurement topology. Two
approaches based on the extended Kalman are described, one
centralized and the other decentralized. Additionally, four other
Kalman filter implementations based on systems with linear
dynamics using artificial measurements are also described, one
centralized and the remaining ones decentralized. The pre-
sented algorithms were chosen for their simplicity, robustness,
and scalability, which are all important design parameters
when choosing an observer. Special emphasis was given to
algorithms that require minimal communication, since the oper-
ating environment might not allow for high-bandwidth and low-
latency communication with current technology, as is the case in
underwater applications. Additionally, only algorithms that can
handle arbitrary measurement topologies were considered, since
one of the objectives of this work is to investigate algorithms
that are versatile enough to do so. These algorithms were
subsequently implemented in a simulation environment and
their performance was analyzed. Monte Carlo results were
obtained in order to investigate the impact of the measurement
topology on the behavior of the algorithms. In particular, the
root-mean-squared-error of the obtained estimates and their
mean error were investigated.

I. INTRODUCTION

Advances in technology in the past years have brought
increased interest towards the development of autonomous
vehicles. Not only do these allow for missions which come
at minimal risk for humans, but they also allow for use of
cheaper and smaller vehicles, since they do not need to be
manned. This makes autonomous vehicles a very captivat-
ing technology for activities such as surveillance, scientific
exploration, resource gathering, and rescue missions, among
others.

Unmanned vehicles (UVs) can be distinguished by their
respective fields of application and operating environment
(space, water and ground). Unmanned aerial vehicles (UAVs)
and autonomous underwater vehicles AUVs are of special
interest. The navigation problem for these differs from that
of the unmanned ground vehicle (UGV) navigation problem,
not only due to the extra spatial dimension, but also due to
the fact that their respective operating fluid’s momentum will
have a much larger effect on the vehicles’ kinematics than
in the UGV problem.

An essential part of a system of autonomous vehicles
is the localization aspect, which is more challenging in
underwater applications due to the lack of reliable access

to satellite navigation systems. Because of this, underwater
localization must be performed via relative measurements
and information exchange between agents. Due to the under-
water attenuation of the electromagnetic spectrum used for
conventional communication, centralized approaches might
become impractical due to bandwidth or range restrictions.
Thus, there is a need for decentralized navigation algorithms,
which scale better with the number of agents and are possibly
more robust.

In this work, the problem of decentralized state estimation
for an unmanned vehicle formation is considered, whereby
the agents attempt to localize themselves and estimate their
local fluid velocity through measurements and information
exchange with their neighbors. The development of this work
led to the publication of [1], in which two of the approaches
studied here were analyzed. In addition to these, this work
includes approaches based on systems which present linear
observation dynamics, from which it is possible to obtain
good convergence properties.

A. Related work

Much work has been done on the subject of decentralized
navigation. Some approaches, including the ones presented
in this work, have their basis on the widely used Kalman
filter, which remains a powerful tool when it comes to state
estimation in the presence of Gaussian white noise.

In [2], the authors attempt to replicate the centralized
Kalman filter by using a communication scheme to distribute
all dead-reckoning and measurement information between
agents, such that they can all manage a centralized Kalman
filter with all the information. This approach does not take
advantage of the benefits of decentralization, such as scalabil-
ity, and requires too much communication between agents,
which is not desirable. Other works, such as [3], also at-
tempt to reproduce the centralized filter through bookkeeping
strategies. In [4], the authors present a decentralized solution
based on the covariance intersection algorithm to build
a consistent Kalman filter estimator, guaranteeing that its
estimates do not become overconfident, which is important
in order to prevent divergence of solutions based on the
extended Kalman filter [5]. More recently, [6] presented a
decentralized algorithm which approximates the centralized
Kalman filter while requiring very limited communication
between neighbors and showing good scalability. This al-
gorithm is applied in this work, considering bearing and



depth measurements in an extended Kalman filter version
of the algorithm, as well as modified version, which uses
the definition of an artificial output. The considered system
output is based on the work [7], whereby independent
observers are designed using a bearing-based artificial output,
which guarantees global asymptotic stability in acyclical
formations. Another approached based on the Kalman filter
for linear time-invariant systems is presented in [8], whereby
the authors present a method for computing gain matrices
for each agent. This approach is also used in this work
by applying the method for computing the gain matrices to
artificially constructed position difference measurements.

B. Notation

In this section, the notation adopted throughout this
work is defined. Vectors and matrices are represented in
bold and their scalar entries are superscripted, such that
v = (vi) ∈ Rn and A = (Aij) ∈ Rm×n. The identity and
zero square matrices of size n are represented as In and
0n, respectively. If the zero matrix is not square, then it is
represented as 0m×n ∈ Rm×n. The transpose operator is
represented by (·)T and diag(·) builds a diagonal matrix
from the arguments. Additionally, the Kronecker product
is denoted by the symbol ⊗, such that, for A ∈ Rm×n,
B ∈ Rp×q , one has

A⊗B :=

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 ∈ Rpm×qn.

If S denotes a set, |S| represents its cardinality, i.e., the
number of elements in S.

II. PROBLEM STATEMENT

Consider a set of UVs, numbered from 1 to N , operating
in a 3D environment such that the movement of each UV in
the inertial frame, {I}, is described by{

ṗi(t) = Ri(t)vri(t) + vfi(t)

v̇fi(t) = 03

,

where pi(t) =
[
px
i (t) py

i (t) pz
i (t)

]T ∈ R3 represents the
position of the ith UV, Ri ∈ SO(3) is the rotation matrix that
describes the attitude of the agent, transforming coordinates
in its body frame to coordinates in the inertial frame, and
vri(t) is its local velocity relative to the fluid it is operating
in, represented in the UV’s body frame. Note that, in practical
terms, vfi is a function of both time and the position, pi,
of the agent. However, in nominal terms, it is assumed to be
constant. In practice, by appropriate tuning of the parameters
of the filtering solution, it is possible to estimate slowly time-
varying quantities.

Since solutions are usually implemented on a digital com-
puter, the continuous-time kinematics must be discretized,
resulting in{

pi(tk+1) = pi(tk) + Tvfi(tk) + ui[k]

vfi(tk+1) = vfi(tk)
, (1)

where

ui[k] =

∫ tk+1

tk

Ri(t)vri(t)dt (2)

and T is the sampling time. In state-space form, letting the
state of the ith agent be defined as

xi[k] :=

[
pi(tk)
vfi(tk)

]
∈ R6, (3)

and following (1), the motion model of an agent is given by

xi[k + 1] = Axi[k] + Bui[k],

where
A :=

[
I3 T I3
03 I3

]
(4)

and
B :=

[
I3
03

]
. (5)

The UVs are equipped with sensors that enable them to
make measurements about themselves, such as depth and
attitude measurements; and about their neighbors, such as
bearing measurements. In addition to this, they are also
capable of some degree of communication between them-
selves, enabling them to share quantities, such as position
estimates, with their neighbors. A major feature of some of
the estimators presented in this work is the use of an artificial
direction measurement, which is can be constructed from the
bearing angles that agent i measures with respect to agent
j, θij and φij . These can be used to construct the inertial
direction vector from agent i to agent j, dij , through

dij(tk) = Ri(tk)

cos θij(tk) cosφij(tk)
cos θij(tk) sinφij(tk)

sin θij(tk)


=

pj(tk)− pi(tk)

||pj(tk)− pi(tk)|| ,
(6)

where the last equality holds given noiseless attitude and
bearing measurements.

At this point, it is assumed that if the jth UV is capable
of taking measurements about the ith agent, then there is
a bidirectional communication link between the two. The
formation’s measurement configuration can then be repre-
sented with a single directed graph G := (V, E), where
V is the set of UVs and E is the set of directed edges,
representing measurement information flow. The jth UV
takes measurements about the ith UV if there is a directed
edge leaving node i and entering node j, i.e., if there is an
edge eij = (i, j). The neighbor set of the ith UV is then
defined as the set of UVs that it takes measurements about,
i.e., Ni = {j : (j, i) ∈ E}. It is also assumed that V can be
further separated into two disjoint subsets, VL and VF , such
that VL ∪VF = V . The set VL contains the so-called leader
UVs, which are assumed to able to estimate their position
with some accuracy by themselves, and the set VF contains
the follower UVs, that must estimate their state based on
measurements about their neighbors and communication with
them.



Fig. 1: Example measurement graph.

Example 1: Consider the measurement graph, G, pre-
sented in Fig. 1. In this example, the leader set is VL = {1}
and the follower set is VF = {2, 3}, which is graphically
represented with grayed out nodes. As per the previous def-
initions, the 2nd UV takes measurements about and receives
information from the 1st and 3rd agents. Likewise for the 3rd

UV, which takes measurements about agents 1 and 2, one
has N3 = {1, 2}. The neighbor sets of the UVs 1 and 2 are
N1 = ∅ and N2 = {1, 3}, respectively.

The decentralized navigation problem addressed in this
paper is to estimate the position pi of each UV, as well as its
local fluid velocity vfi , constrained by the fact that the agents
only have access to local information that they can obtain,
be it through measurements or limited communication with
their neighbors. In addition to the decentralized navigation
approaches presented in this work, centralized solutions
are presented as well, in order to establish a baseline for
comparison with their decentralized alternatives.

III. EXTENDED KALMAN FILTER SOLUTIONS

The most straightforward approach to the navigation prob-
lem is by using the measurements captured by the UVs di-
rectly by employing an extended Kalman filter (EKF), which
requires the linearization of the observation model. EKF-
based solutions are usually not guaranteed to be globally
convergent to the true solution and might require fine tuning
of the filter parameters.

A. Centralized extended Kalman filter

While the centralized extended Kalman filter (CEKF) has
access to all data, this comes with some serious drawbacks,
such as heavy reliance on communication between UVs and
lack of scalability. Regardless, they have the potential to give
the ”best” estimates, and, as such, the CEKF is presented for
comparison with its decentralized counterpart.

1) Motion updates: Define the whole state as

x[k] :=

x1[k]
...

xN [k]

 ∈ R6N ,

where each xi is defined as in (3), representing the position
and local fluid velocity of each UV. Then, considering A
and B as defined in (4) and (5), the complete system motion
model is given by

x[k + 1] = Acx[k] + Bcu[k],

where 

Ac = IN ⊗A

Bc = IN ⊗B

u[k] =

u1[k]
...

uN [k]

 , (7)

with ui[k] defined in (2), and N = |V| is the number of
agents. The prediction step for the CEKF is given by{

x̂[k + 1|k] = Acx̂[k] + Bcu[k]

Σ[k + 1|k] = AcΣ[k|k]AT
c + Qc

, (8)

where x̂ and Σ are the state estimate mean and covariance
matrix, respectively, and Qc is the centralized process noise
covariance matrix.

2) Measurement updates: In the following, the discrete-
time dependence of the agents is omitted for clarity, unless
explicitly needed. Let yi = hi(x) be a measurement taken
by an UV with index i, and let the complete measurement
vector, y, be the concatenation of all the individual measure-
ment vectors, as in

y = h(x) =

h1(x)
...

hN (x)

 .
In order to perform the update step of the CEKF, the Jacobian
of the measurement model must be computed according to

J(x) =

∂h1/∂x
...

∂hN/∂x

 =

∂h1/∂x1 · · · ∂h1/∂xN

...
. . .

...
∂hN/∂x1 · · · ∂hN/∂xN

 .
(9)

Since the real state is unknown, the Jacobian, J = J(x), is
approximated by Ĵ = J(x̂), hence one of the reasons why a
good enough initial state estimate is necessary.

Since EKF-based approaches allow for arbitrary measure-
ment models, the general update equations are presented
here, and some specific measurement models are described
in the following section. Upon receiving measurements, the
CEKF update equations are given by{

x̂[k + 1|k + 1] = x̂[k + 1|k] + K (y[k + 1]− ŷ[k + 1])

Σ[k + 1|k + 1] =
(
I6N −KĴ

)
Σ[k + 1|k]

,

where K = Σ[k + 1|k]ĴT
(
ĴΣ[k + 1|k]ĴT + Rc

)−1
is the

Kalman gain, with Ĵ evaluated using the predicted estimate,
x̂[k + 1|k], and Rc is the centralized measurement vector
noise covariance matrix. Lastly, ŷ[k + 1] = h(x̂[k + 1|k]) is
the expected value of the measurement vector, given the
current state estimate.

3) Measurement models: Some common measurement
models will now be introduced. In particular, models for
position, depth, and bearing measurements are presented. For
ease of representation, the explicit discrete-time dependence
is omitted unless explicitly necessary.



If the UV making a measurement has direct access to
position measurements yi = hi(x) = pi(tk), its relevant
part in (9) is given by ∂hi/∂x =

[
· · · I3 03 · · ·

]
, where

i is the index of the measuring agent and I3 occupies the
columns corresponding to pi in the complete state vector. If,
on the other hand, the ith UV takes bearing measurements
about UVs in its neighbor set, which, for simplicity, is
assumed to be Ni = {1, . . . , |Ni|}, in addition to a depth
measurement about itself, zi(tk) = pz

i (tk), the measurement
model is given by

hi(x) =


hi1

...
hi|Ni|

pz
i

 ,
where

hij(x) = hb(pi,pj) =

[Iθ(pi,pj)
Iφ(pi,pj)

]
=

[
atan2

(
pz
j − pz

i ,
√

(px
j − px

i )2 + (py
j − py

i )2
)

atan2
(
py
j − py

i ,p
x
j − px

i

) ]
,

and the angles Iθ and Iφ are represented in the inertial
frame. Bearing measurements are measured in the UV’s
body frame. However, the UVs measure their orientation
and, as such, can rotate the bearing measurement so that
it is represented in {I}. The Jacobian for the model hi is
given by

∂hi

∂x
(x) =


∂hi1/∂x

...
∂hi|Ni|/∂x

Cz

 ,
where

∂hij

∂x
(x) =

[
· · · Jbi(x) · · · Jbj (x) · · ·

]
,

with Jbi := ∂hb/∂xi and Jbj := ∂hb/∂xj , and
Cz ∈ R1×6N is such that all entries are zero except the one
corresponding to pz

i in the entire state vector. The explicit
expression of the bearing model Jacobian is omitted for
brevity.

B. Decentralized extended Kalman filter

In this section, an implementation of the solution presented
in [6] is described for depth and bearing measurements,
which will be labeled in this work as decentralized extended
Kalman filter (DEKF). This asynchronous approach is com-
pletely decentralized and relies only on local communication
between agents.

1) Motion model: Consider the state of the ith agent,
xi, defined as in (3), and denote its filtered estimate and
covariance by x̂i and Σ̂ii, respectively. Note that the DEKF
approximates the CEKF, thus the covariances of each agent
and their cross-covariances to other agents will not be exact,

hence the chosen hat notation. Consider also the decompo-
sition of the cross-covariance between agents i and j, Σ̂ij ,
such that

Σ̂ij [k] = Φ̂ij [k]Φ̂T
ji[k].

Let each agent carry its estimated belief, Bi := {x̂i, Σ̂ii},
and cross-covariance factor, Φ̂ij , between itself and other
agents it has knowledge of, i.e. Φ̂ij for all j ∈ Ni. The
corresponding CEKF prediction equations for agent i, which
account for its motion, are given by

x̂i[k + 1|k] = Ax̂i[k|k] + Bui[k]

Σii[k + 1|k] = AΣii[k|k]AT + Qi

Σij [k + 1|k] = AΣij [k|k]

, (10)

leaving the remaining terms x̂j ,Σjj for all j 6= i, unchanged.
So, if UV i updates its cross-covariance factor to another UV
j through

Φ̂ij [k + 1|k] = AΦ̂ij [k|k] ∀j ∈ Ni (11)

when performing prediction steps, when they meet, their
reconstructed cross-covariance is given by

Σ̂ij [k + 1|k] = AΦ̂ij [k|k]Φ̂ji[k|k]T

= AΣ̂ij [k|k]

= Σij [k + 1|k],

if it holds that Σ̂ij [k|k] = Σij [k|k]. In general, Σ̂ij [k|k] 6=
Σij [k|k], however, what is important is that, since all terms
are available, the prediction step of the CEKF can be
reproduced exactly at each agent in a decentralized way
while requiring no communication, thus resulting in no loss
of estimation capabilities with respect to this step. All UVs
then predict their beliefs and cross-covariance factors to other
agents according to (10) and (11), substituting xi and Σii

by their estimated state and covariance matrix, x̂i and Σ̂ii.
2) Observation model: While all the measurements are

available simultaneously for computation of the update step
in the CEKF, the DEKF is asynchronous and, as such,
only one measurement vector is considered at a time. In a
centralized approach, this would be equivalent to considering
an observation model containing only one measurement at a
time and performing several updates at each time step.

Consider that a leader UV with index i takes a measure-
ment, yi, of its position. Dropping the explicit discrete-time
dependence, the measurement model for this agent is given
by

h(xi) =
[
I3 03

]
xi = Cixi.

Since this equation only involves the measuring agent, the
estimated belief and cross-covariance factors to other agents
are updated according to

x̂i[k + 1|k + 1] = x̂i[k + 1|k]

+ Ki(yi[k + 1]− ŷi[k + 1])

Σ̂ii[k + 1|k + 1] = (I6 −KiCi) Σ̂ii[k + 1|k]

Φ̂ij [k + 1|k + 1] = (I6 −KiCi) Φ̂ij [k + 1|k]

, (12)



where ŷi[k + 1] = h(x̂i[k + 1|k]) is the expected measure-
ment vector, Ki is the Kalman gain, given by

Ki = Σ̂ii[k + 1|k]CT
i

(
CiΣ̂ii[k + 1|k]CT

i + Ri

)−1
,

and Ri is the measurement noise covariance matrix. Note
that the last equation of (12) should be performed for all
agents that UV i has knowledge of. In a centralized Kalman
filter, measurements taken by an agent also affect the state
of all agents that are correlated with it through previous
measurements. However, in order to prevent excessive com-
munication, the estimated beliefs of other agents are left
unchanged.

Consider now the case where a follower UV with index i
takes a bearing measurement about another UV with index
j and a depth measurement about itself. Let x̂a be the joint
estimate of the states, xi and xj , and Σ̂aa its estimated
covariance, such that

x̂a[k] :=

[
x̂i

x̂j

]
, Σ̂aa :=

[
Σ̂ii Σ̂ij

Σ̂ji Σ̂jj

]
.

The update equations for the joint system are given by
x̂a[k + 1|k + 1] = x̂a[k + 1|k]

+ Ka(yi[k + 1]− ŷi[k + 1])

Σ̂aa[k + 1|k + 1] =
(
I6 −KaĴa

)
Σ̂aa[k + 1|k]

, (13)

where yi[k + 1] is the concatenation of the bear-
ing measurement to another UV with the captured
depth measurement, ŷi[k + 1] is its expected value,
Ĵa =

[
Jfi(x̂i, x̂j) Jfj (x̂i, x̂j)

]
is the Jacobian matrix of

the joint system’s measurement model computed using the
predicted state estimates, x̂i[k + 1|k] and x̂j [k + 1|k], with
Jfi and Jfj defined as

Jfi(xi,xj) :=

[
Jbi(xi,xj)

Cz

]
Jfj (xi,xj) :=

[
Jbj (xi,xj)

01×6

] ,
and Ka is the Kalman gain, given by

Ka = Σ̂aa[k + 1|k]ĴT
a

(
ĴaΣ̂aa[k + 1|k]ĴT

a + Ri

)−1
,

where Ri is the measurement noise covariance matrix. These
quantities can be computed locally at the measuring agent,
requiring only that UV j transmits its estimated belief,
Bj , and its cross-covariance factor to agent i, Φ̂ji. UV
i is then responsible for reconstructing the joint system’s
belief and performing the joint update equations. It then
communicates to UV j its updated belief, obtained from
the entries of x̂a[k + 1|k + 1] and Σ̂aa[k + 1|k + 1]. In
order not to double-count information, the cross-covariance
between agents i and j must be distributed correctly. Since
the decomposition of the cross-covariance between agents
can be done in any way, it can be agreed beforehand, as
done in [6], that upon receiving updated estimates, agent j

sets its cross-covariance factor to UV i as the identity matrix,
i.e. Φ̂ji[k + 1|k + 1] = I6, and UV i sets

Φ̂ij [k + 1|k + 1] = Σ̂ij [k + 1|k + 1], (14)

where Σ̂ij [k + 1|k + 1] can be obtained from the updated
joint state covariance matrix, Σ̂aa[k + 1|k + 1]. This way,
the cross-covariance between these two agents is preserved,
since Φ̂ij [k+ 1|k+ 1]IT6 = Σ̂ij [k+ 1|k+ 1], and there is no
need for communicating to agent j a new cross-covariance
factor. As before, in order to prevent communication between
participating and non-participating agents, the state and co-
variance estimates of the latter are left unchanged.

The only terms that still need to tracked are the
cross-covariance factors between participating and non-
participating agents. This is stated to be the main contribution
of the work in [6] and, as such, only the main result
is presented here. The interested reader is referred to the
original work for details. The last update equation performed
by participating agents is

Φ̂il[k+1|k+1] = Σ̂ii[k+1|k+1]Σ̂−1ii [k+1|k]Φ̂il[k+1|k],
(15)

where i represents the index of participating UVs and l the
index of non-participating agents. Note that both participat-
ing agents should perform the update (15).

To summarize, updates performed by leader UVs when
they take a measurement of their position are performed
using (12). When an agent with index i takes a bearing mea-
surement about UV with index j, the updates are done using
(13), (14), and (15), with UV j setting Φ̂ji[k + 1|k + 1] = I6
upon receiving its updated belief, and performing (15) locally
as well.

IV. ARTIFICIAL MEASUREMENT SOLUTIONS

An alternative to EKF-based filters is to construct artificial
outputs such that the measurement model becomes linear,
and then use this model to build an observer. With this
approach, better convergence properties can be achieved,
increasing the time-efficiency of missions since an initial
setup process is not required.

A. Independently interconnected Kalman filters

In this section, the approach considered in [7] is pre-
sented. Briefly, is based on constructing observers which
present globally convergent error dynamics for each agent,
and interconnecting them by using their estimates as ”true”
information, which is fed to the other observers. Even
though it keeps no cross-measurement information is kept
between agents and each agent’s estimate is taken as true
information by other agents, this estimator achieves the worst
performance out of the considered ones, though it does
achieve globally convergent dynamics, provided that each
agent’s observer is globally observable, and the information
flow is unidirectional, as is the case for tiered formations [7],
[10].

The prediction and update equations for each agent’s
observer follow the general Kalman filter dynamics. Letting



x̂i and Σii be the state estimate and covariance of the ith

UV, respectively, the prediction step equations are given by{
x̂i[k + 1|k] = Ax̂[k|k] + Bui[k]

Σii[k + 1|k] = AΣii[k|k]AT + Qi

,

where Qi is the process noise covariance matrix of the agent.
Likewise, the update equations are

x̂i[k + 1|k + 1] = x̂i[k + 1|k]

+ Ki(yi[k + 1]−Cix̂i[k + 1|k])

Σii[k + 1|k + 1] = (I6 −KiCi) Σii[k + 1|k]

,

where Ci is the observation matrix to be described in the
following, yi[k + 1] is the observation vector, constructed
using measurements obtained at time t = tk+1, and Ki is
the Kalman gain.

Assuming that the ith UV is a leader, then it has direct
access to position measurements, such that yi[k + 1] is its
position measurement vector, and Ci =

[
I3 03

]
. If, instead,

the ith agent is a follower UV which successfully obtains
bearing measurements about its neighbors, j ∈ Ni, and its
depth, it then has access to zi = pz

i (tk+1) and dij(tk+1) for
all j ∈ Ni, computed from the obtained bearing angles, θij
and φij , according to (6). In the following, it is assumed,
for ease of representation and without loss of generality, that
Ni = {1, . . . , |Ni|}.

Upon building the direction vector, the projection matrix,

Dij(tk) := dij(tk)dT
ij(tk), (16)

and its orthogonal complement,

D̄ij(tk) := I3 − dij(tk)dT
ij(tk), (17)

are constructed and the following equality holds,
D̄ij(tk)pi(tk) = D̄ij(tk)pj(tk). Since the true positions of
the neighboring UVs are unknown, the observation vector
of the ith UV, considering also its depth measurement, is
defined as

yi[k + 1] :=


D̄i1(tk+1)p̂1(tk+1|tk)

...
D̄i|Ni|(tk+1)p̂|Ni|(tk+1|tk)

zi(tk+1)

 ,
where p̂j(tk+1|tk) is the predicted position estimate of
the jth agent, extracted from x̂j [k + 1|k], and zi is the
depth measurement obtained by the ith agent. Likewise, the
observation matrix is defined as

Ci :=


D̄i1(tk+1) 03

...
D̄i|Ni|(tk+1) 03

ez 01×3

 ,
where ez =

[
0 0 1

]
.

In [7], an observer such as this one is considered for the
case of acyclical formations, where it is shown that it exhibits
globally exponentially stable error dynamics, provided that
the leader agents also present this kind of error dynamics. If

cycles are introduced into the measurement graph, there will
be a reintroduction of the estimation errors into some of the
agents, which raises some questions about the convergence of
the proposed observer. The performance of this filter under
a cyclical measurement topology was analyzed via Monte
Carlo simulations and some of the results are presented in
Section V.

B. Centralized observer

The centralized version of the observers based on bearing
and depth measurements is presented in this section. Let the
state of the centralized system be defined as

x[k] :=

x1[k]
...

xN [k]

 ∈ R6N

and let x̂ and Σ be its state estimate and covariance matrix,
respectively. The motion model of this approach is the same
as that of the CEKF, i.e., upon receiving the control signals,
the agents’ estimates are predicted according to (8). Let y
and Cc be the complete measurement vector and centralized
observation matrix, respectively, such that y[k] = Ccx[k].
Let y be composed of individual agent measurement vectors,
such that

y :=

y1

...
yN

 , Cc :=

C1

...
CN


where yi is the measurement vector captured by agent i, and
Ci is its measurement model. For the case of leader agents,
yi is a position measurement and Ci =

[
· · · I3 03 · · ·

]
.

As for follower UVs, considering the relationship presented
in [7], D̄ij(tk)(pi(tk) − pj(tk)) = 03×1, and that the UV
has access to depth measurements, the measurement vector,
at time t = tk+1 is then given by

yi[k + 1] =

[
03|Ni|×1
zi(tk+1)

]
,

where zi is the depth measurement. Each Ci relates the mea-
surements captured by the ith agent with the total state vector
using the orthogonal complement of the bearing projection
matrix and depth information, such that yi[k] = Cix[k].
The total state estimate is then corrected according to the
standard Kalman filter update equations using the centralized
observation matrix, Cc.

C. Decentralized observer

Similarly to the DEKF, each agent carries its own esti-
mated belief, Bi = {x̂i, Σ̂ii}, and cross-covariance factors to
other UVs, Φ̂ij . The prediction equations for these quantities
are performed as in the DEKF. In fact, the only difference
between these two approaches is the update step, which is not
restricted to pairwise communication and uses the projection
matrix (17) introduced in [7].

The update equations for leader agents are the exact
same as in the DEKF approach, including the cross-
covariance factor updates. On the other hand, let a



follower agent with index i take bearing measurements
about its neighbors, which will be assumed, without loss
of generality, to have indices j ∈ Ni = {1, . . . , |Ni|},
and a depth measurement about itself. Since
D̄ij(tk)(pi(tk)− pj(tk)) = 03×1, then, considering the

joint state vector xa[k] :=
[
xT
i [k] xT

1 [k] · · · xT
|Ni|[k]

]T
where xi is the state of the measuring agent, one has

ya[k + 1] :=

[
03×|Ni|
zi(tk+1)

]
= Caxa[k + 1],

where Ca establishes constraints between the states, using
D̄ij , and zi is the depth measurement of the measuring
agent. Note that the matrices D̄ij are, again, computed using
the quantities obtained at time t = tk+1, such that, when
computing the update equations, one has D̄ij = D̄ij(tk+1).

Let the estimate of the joint system’s state, composed of
the UVs participating in the measurement of agent i, be
denoted as x̂a, and its associated covariance matrix estimate
as

Σ̂aa =


Σ̂ii Σ̂i1 · · · Σ̂i|Ni|
Σ̂1i Σ̂11 · · · Σ̂1|Ni|

...
...

. . .
...

Σ̂|Ni|i Σ̂|Ni|1 · · · Σ̂|Ni||Ni|

 , (18)

where the discrete-time dependence was also dropped for
readability. In order to reduce the required amount of com-
munication, the cross-covariance terms between the neigh-
bors of UV i can be ignored, such that

Σ̂aa ≈


Σ̂ii Σ̂i1 · · · Σ̂i|Ni|
Σ̂1i Σ̂11 · · · 03×3

...
...

. . .
...

Σ̂|Ni|i 03×3 · · · Σ̂|Ni||Ni|

 .
The cross-covariance terms Σ̂jk, for j, k ∈ Ni, can be ob-
tained from the cross-covariance factors that the participating
agents j and k carry, by letting them communicate these
quantities to agent i, which can then reconstruct the cross-
covariance term and place it into Σ̂aa. For follower UVs,
the Kalman gain is computed for the joint system using the
reconstructed covariance matrix, such that

Ka = Σ̂aa[k + 1|k]CT
a

(
CaΣ̂aa[k + 1|k]CT

a + Ri

)−1
,

where Ri is a compatible measurement noise covariance
matrix. The new beliefs are then computed using the standard
Kalman filter update equations and then communicated to the
participating agents. In turn, these agents update their cross-
covariance factors to non-participating ones according to the
approximation presented in [6], i.e.,

Φ̂ik[k+1|k+1] = Σ̂ii[k+1|k+1]Σ̂−1ii [k+1|k]Φ̂ik[k+1|k],

for every non-participating agent with index k that they have
knowledge of. In case the full covariance matrix was used,
the new cross-covariance terms between the participating
agents can be factorized and distributed in a way that does

not double-count information. A possible rule for distributing
the cross-covariance terms could be, for example

Φ̂ij [k + 1|k + 1] =

{
Σ̂ij [k + 1] if i < j

I6 if i > j
,

though it is not necessarily the one which minimizes the
amount of communication.

D. Static-gain decentralized observer

In this section, a technique for computing steady-state
observer gains for agents that can acquire relative position
measurements to their neighbors, presented in [8], is briefly
described. Local observers for each follower agent are then
designed, coupling these gains with an artificial relative
position output built from bearing measurements and depth
differences between agents.

All agents predict their estimate according to the standard
state prediction equation

x̂i[k + 1|k] = Ax̂[k|k] + Bu[k],

where A, B, and u[k] are defined as in (4), (5), and (2),
respectively. Upon taking measurements and predicting its
state, the ith agent updates its estimate according to

x̂i[k + 1|k + 1] ={
x̂i[k + 1|k] + Ki(yi[k + 1]− x̂i[k + 1|k]) if i ∈ VL
x̂i[k + 1|k] + Ki(mi[k + 1]−∆x̂[k + 1|k]) if i ∈ VF

,

where

∆x̂ =


x̂i[k + 1|k]− x̂1[k + 1|k]

...
x̂i[k + 1|k]− x̂|Ni|[k + 1|k]

p̂z
i (tk+1|tk)

 ,
yi[k+1] is an absolute position measurement, and mi[k+1]
is a vector containing the captured depth measurement and
relative position measurements between the measuring agent
and its neighbors, assumed to be Ni = {1, . . . , |Ni|}. The
formation gains, Ki, are computed by propagating the cen-
tralized system’s covariance prediction and update equations
using a gain matrix computed subject to a certain sparsity
constraint, which, in this case, constrains the total system
gain matrix, K, to be block diagonal. Upon computing the
formation gains, each block of K is extracted and set as Ki

accordingly.
The centralized system’s motion model is identical to that

of the CEKF, such that Ac = IN ⊗A. As for the observation
model, whereas leader agents can capture measurements of
their own position, follower agents are assumed to capture
relative position and depth measurements, that is

mi[k + 1] =


pi(tk+1)− p1(tk+1)

...
pi(tk+1)− p|Ni|(tk+1)

zi(tk+1)

 .
Let Cc be centralized system’s observation matrix, contain-
ing matrices CL =

[
I3 03

]
for leader measurement entries.



For follower measurement entries, the measuring agent’s
entry is modeled with CL, whereas the entry corresponding
to the agent whose measurement is taken about is modeled
with −CL. Additionally, the depth measurements taken
by follower agents are modeled using the vector ez =[
0 0 1 0 0 0

]
. This is equivalent to replacing the

D̄ij matrices by identity matrices, I3, in the the centralized
observation matrix of the algorithm presented in Section IV-
B.

Following the results derived in [8], the centralized gain
subject to a sparsity constraint is then computed by propa-
gating

Σ[k + 1|k] = AcΣ[k|k]AT
c + Qc (19)

and
Σ[k + 1|k + 1] =

(I6N −K[k]Cc)Σ[k + 1|k](I6N −K[k]Cc)
T

+ K[k]RcK[k]T
(20)

until the trace of Σ[k+1|k+1] reaches a steady-state value.
Define li ∈ R6N as the unit vector such that all entries
are zero except the ith one and let Li := diag(li). In the
above equations, Qc = diag(Q1, . . . ,QN ) is the centralized
process noise covariance matrix, Rc is the centralized ob-
servation model noise covariance matrix, and K[k] is given
by

K[k] =

6N∑
i=1

LiΣ[k+1|k]CT
c Mi (I6N −Mi + MiSMi)

−1
,

where S = CcΣ[k + 1|k]CT
c + Rc. The sparsity constraint

is imposed by the matrix Mi, which is built to encode the
measurements each agent has access to. Letting si be a vector
such that {

sji = 1 if Eij = 1

sji = 0 otherwise
,

where E ∈ R6N×m is the sparsity pattern matrix, with m
the total measurement vector length, Mi is then built as
Mi = diag(si).

Consider the vector yij(tk) :=
[
01×3 zi(tk)− zj(tk)

]T
,

where zi and zj are the depth measurements obtained by UVs
with indices i and j, respectively. Let ∆ij(tk) = pi(tk) −
pj(tk) and

Pij(tk) =

[
D̄ij(tk)

0 0 1

]
,

with D̄ij defined as in (17). One then has that
Pij(tk)∆ij(tk) = yij(tk), from which it is possible to
recover ∆ij(tk) as

∆ij(tk) =
(
PT

ij(tk)Pij(tk)
)−1

PT
ij(tk)yij(tk),

provided that PT
ij(tk)Pij(tk) is invertible, which is the case

if zi(tk)− zj(tk) 6= 0.
Rather than actual relative position measurements, the

vector entries, mij ∈ R3, of mi, are instead taken as

mij [k + 1] = αij∆ij(tk+1)+

(1− αij)Dij(tk+1)(p̂i(tk+1|tk)− p̂j(tk+1|tk)),

Fig. 2: Nominal trajectory of the leader agent with index 1.

with Dij defined in (16). Each artificial relative position
measurement is given by a weighted sum of the extracted
position difference, ∆ij , and the projection of its current
prediction, Dij(p̂i − p̂j), with p̂i and p̂j extracted from
x̂i[k + 1|k] and x̂j [k + 1|k], respectively. This projection
is done using Dij(tk+1), which is constructed using the
measured bearing angles via dij(tk+1), according to (6) and
(16). Since the matrix PT

ijPij becomes close to singular if
the height difference between the agents is close to zero,
causing numerical instability, the weights are chosen as
αij = |dz

ij(tk+1)|. This ensures that when the extracted posi-
tion difference, ∆ij , is unreliable, the bearing measurement
information can still be used.

V. SIMULATION RESULTS

Due to space limitations, only some results pertaining to
the Monte Carlo analysis are shown here.

A. Setup

The setup considered for simulation analysis consists of
a set of 10 UVs performing a mission, whereby the agents
must visit a set of waypoints while maintaining a certain
formation. The agents start with a given spatial distribution
and maintain this formation for a portion of their mission.
At around t = 400 s, they change to a different spatial
distribution, before diving underwater, and then continue
their mission.

The considered measurement topologies are presented in
Figs. 3a and 3b. The agents are organized by tiers, such that
T0 = {1, 2} = VL, T1 = {3, 4, 5, 6}, and T2 = {7, 8, 9, 10}
are the sets of agents in tiers 0, 1, and 2, respectively. Note
that there are two leaders, agents 1 and 2, and they both
are at the top of the formation, in tier 0. The cycles were
made by flipping some of the edges (highlighted in green in
Fig. 3b) between tiers 1 and 2 in the acyclical topology, and
by introducing the blue edges around each tier of agents.

In order to evaluate the performance of the presented
estimators, the algorithms were implemented on each agent
and N = 500 runs of the mission were simulated. The
root-mean-squared-error (RMSE) of the position and fluid
velocity estimates, obtained for each time instant from the
collection of Monte Carlo runs, was then computed, such



(a) Acyclical topology measurement graph.

(b) Cyclical topology measurement graph.

Fig. 3: Measurement topologies.

that

RMSE(x[k]) =

√∑N
n=1 ||x[k]− x̂n[k]||2

N
,

where x[k] is the concatenation of the state vectors of all
UVs at time k, and x̂n[k] is its estimate obtained in the
nth Monte Carlo run. Additionally, in order to investigate
whether the estimators are biased, the mean error of the
estimated quantities, for each time instant, was computed
from the collection of Monte Carlo runs, as given by

mean(x[k]) =
1

N

N∑
n=1

x[k]− x̂n[k].

B. Results

The convergence of the algorithms was studied separately
from their steady-state performance. Firstly, the convergence
behavior of the presented solutions is studied. Then, the
steady-state behavior is analyzed by considering small initial
estimation errors.

Besides the CEKF and DEKF, the other approaches are
labeled as follows. The approach presented in Section IV-
A is labeled as IKF; the centralized Kalman filter approach,
presented in IV-B, is labeled as CKF; and the two variants of
its decentralized counterpart, presented in Section IV-C, are
labeled as DKF-FCS and DKF-PCS. DKF-FCS reproduces
the whole joint covariance matrix (18), whereas DKF-PCS
keeps communication to a minimum and does not fill the
entries corresponding to cross-covariances between neigh-
bors of the measuring agent. Lastly, the static-gain observer
presented in Section IV-D is labeled as SLTI.

TABLE I: Number of convergent runs for each EKF-based
estimator.

Acyclical Cyclical

CEKF 443 (88.6%) 448 (89.6%)
DEKF 463 (92.6%) 487 (97.4%)
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(a) Acyclical topology RMSE results of observers tuned for con-
vergence speed.
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(b) Cyclical topology RMSE results of observers tuned for conver-
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Fig. 4: RMSE results.

1) Convergence analysis: The number of convergent runs,
under each topology, for both the CEKF and DEKF, are
presented in Table I. Similar results were obtained for
different formation configurations and tuning parameters, and
show that the centralized approach is more sensitive to initial
conditions than its decentralized counterpart. As for the lin-
ear estimators, their estimates converged to the true solution
on all runs. The RMSE of the convergent estimates obtained
by each of the considered estimators, for both measurement
topologies, is presented in Figs. 4a and 4b. Upon introduction
of new edges to form cycles, the convergence speed of the
IKF worsens, which is related to the fact that this observer
design disregards possible cross-measurement information.

2) Steady-state performance: Here, the RMSE of the
estimates obtained with each estimator, tuned for steady-
state performance, is compared. The RMSE results for the
acyclical topology are presented in Fig. 5a, and for the
cyclical measurement topology in Fig. 5b.

From these figures, it is possible to conclude that the
introduction of edges to form cycles had a beneficial effect on
the performance of all estimators except the IKF and SLTI.
The IKF suffers from the introduction of these edges because
it lacks cross-measurement information, which leads to errors
being re-introduced into the system without any kind of
dampening. The SLTI, however, is impacted negatively by
the presence of measurements to agents which lie on the
same horizontal plane as the measuring UV. Additionally,
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Fig. 5: RMSE results of algorithms tuned for steady-state
performance.

the centralized estimators do not provide the estimates with
the lowest RMSE, which is due to the presence of a
non-zero measurement error bias originating, mostly, from
the construction of the direction vector in the presence of
noisy bearing measurements. This measurement error bias
translates into a bias in the position estimation error of
the agents, which is briefly discussed in the following. For
that effect, the mean results for the x coordinate of the
estimated positions and fluid velocities of the UVs were
investigated, and, in Figs. 6a and 6b, the results pertaining to
px
3 are presented. Regardless of the measurement topology,

there is a clear non-zero estimation error bias for the linear
estimators. Since the EKF-based approaches use the bearing
angles directly (after rotation to the inertial frame), the noise
affecting the measurement vector of these approaches is
closer to a normally distributed noise than the one affecting
the other approaches, hence there is no noticeable bias in
these approaches’ results, which allows them to provide
better estimates.

VI. CONCLUSION

In this work, both centralized and decentralized cooper-
ative navigation techniques were described and evaluated.
The EKF-based approaches were compared with artificial
measurement based ones, under both acyclical and cycli-
cal measurement topologies. While the latter approaches,
which are based on linear measurements, present better
convergence qualities when compared to EKF-based ones,
this comes at the cost of changing the noise characteristics
of the measurement error vector, which prevents Kalman
filter implementations from providing unbiased estimates,
worsening their performance. In both the convergence and
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Fig. 6: Mean px
3 estimation error of observers tuned for

steady-state performance.

steady-state analysis of the algorithms, the decentralized
approaches outperformed the centralized ones.
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